Chapter 11 Data Analysis and Statistics

- 1. Using Normal Distributions
- 2. Populations, Samples, and Hypotheses
- 3. Collecting Data
- 4. Experimental Design
- 5. Making Inferences from Sample Surveys
- 6. Making Inferences from Experiments

Mean (μ) - is the average value in a dataset

$$\mu = \frac{\sum_{k=1}^{n} x_k}{n}$$

Median - the value in a dataset that has exactly half the data values above it and half below it.

Midrange - the average of the min and max values in a dataset

The **median** is equal to the **mean** (μ) when the distribution of data is symmetric.

The **median** is a better choice for **center** than midrange.

For **unimodal** (one mode), symmetrical distribution, it is easy to find the center. It is just the center of symmetry.

The spread of the data is also important.

The **standard deviation** (σ) is how far each data value is from the mean.

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{n}}$$

The **variance** (σ^2) is just standard deviation squared. Variance will come into play later in the unit.

The graph of a **normal distribution** is a bell-shaped curve called a **normal curve** that is symmetric about the mean.

Areas Under a Normal Curve

A normal distribution with mean μ (the Greek letter mu) and standard deviation σ (the Greek letter sigma) has these properties.

If an x-value is randomly selected from a distribution, what is its probability?

a.
$$P(x \ge \mu)$$
 $0.5 = 50 \%$

b.
$$P(\mu \le x \le \mu + 2\sigma)$$
 $0.475 = 47.5\%$

c.
$$P(\mu - \sigma \le x \le \mu)$$
 0.34 = 34 %

An automobile brake and muffler shop reported the repair bills for their customers yesterday.

88	203				
283	118				
312	143				
290	252				
172	227				
154	56				
400	192				
381	292				
346	213				
181	422				

a. Find the mean and standard deviation of the repair costs.

$$\mu = $236.25$$
 $\sigma = 100.81

b. Is it appropriate to use the mean and standard deviation to summarize these data?

Yes. The data are roughly symmetric, with no outliers.

The **standard normal distribution** is the normal distribution with mean 0 and standard deviation 1.

$$z = \frac{x - \mu}{\sigma}$$

The z-value for a particular x-value is called the **z-score**. It is the number of standard deviations the x-value lies above or below the mean μ .

The standard normal table can be used to determine the probability of a z-score.

Standard Normal Table										
z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
-3	.0013	.0010	.0007	.0005	.0003	.0002	.0002	.0001	.0001	+0000
-2	.0228	.0179	.0139	.0107	.0082	.0062	.0047	.0035	.0026	.0019
-1	.1587	.1357	.1151	.0968	.0808	.0668	.0548	.0446	.0359	.0287
-0	.5000	.4602	.4207	.3821	.3446	.3085	.2743	.2420	.2119	.1841
0	.5000	.5398	.5793	.6179	.6554	.6915	.7257	.7580	.7881	.8159
1	.8413	.8643	.8849	.9032	.9192	.9332	.9452	.9554	.9641	.9713
2	.9772	.9821	.9861	.9893	.9918	.9938	.9953	.9965	.9974	.9981
3	.9987	.9990	.9993	.9995	.9997	.9998	.9998	.9999	.9999	1.0000-

Real-Life Example

a. A study finds that the weights of infants at birth are normally distributed with a mean of 3270 grams and a standard deviation of 600 grams. An infant is randomly chosen. What is the probability that the infant weighs 4170 grams or less? Use the table from the previous slide.

$$P(z \le 1.5) = 0.9332$$
 $z = \frac{x - \mu}{\sigma}$

b. What is the probability that the infant weighs 3990 grams or more?

$$P(z \ge 1.2) = 1 - 0.8849 = 0.1151$$

Recognizing Normal Distributions

Not all distributions are normal.

Determine whether histogram has a normal distribution.

Ages 20–29

0.15
0.05
58 60 62 64 66 68 70 72 74
Height (inches)

approx. normal distribution

skewed right, not normal distribution

